Controlled Experiments for Word Embeddings

نویسندگان

  • Benjamin J. Wilson
  • Adriaan M. J. Schakel
چکیده

An experimental approach to studying the properties of word embeddings is proposed. Controlled experiments, achieved through modifications of the training corpus, permit the demonstration of direct relations between word properties and word vector direction and length. The approach is demonstrated using the word2vec CBOW model with experiments that independently vary word frequency and word co-occurrence noise. The experiments reveal that word vector length depends more or less linearly on both word frequency and the level of noise in the co-occurrence distribution of the word. The coefficients of linearity depend upon the word. The special point in feature space, defined by the (artificial) word with pure noise in its co-occurrence distribution, is found to be small but non-zero.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Word-Alignment-Based Segment-Level Machine Translation Evaluation using Word Embeddings

One of the most important problems in machine translation (MT) evaluation is to evaluate the similarity between translation hypotheses with different surface forms from the reference, especially at the segment level. We propose to use word embeddings to perform word alignment for segment-level MT evaluation. We performed experiments with three types of alignment methods using word embeddings. W...

متن کامل

Online Learning of Interpretable Word Embeddings

Word embeddings encode semantic meanings of words into low-dimension word vectors. In most word embeddings, one cannot interpret the meanings of specific dimensions of those word vectors. Nonnegative matrix factorization (NMF) has been proposed to learn interpretable word embeddings via non-negative constraints. However, NMF methods suffer from scale and memory issue because they have to mainta...

متن کامل

Using Embedding Masks for Word Categorization

Word embeddings are widely used nowadays for many NLP tasks. They reduce the dimensionality of the vocabulary space, but most importantly they should capture (part of) the meaning of words. The new vector space used by the embeddings allows computation of semantic distances between words, while some word embeddings also permit simple vector operations (e.g. summation, difference) resembling ana...

متن کامل

Tailoring Word Embeddings for Bilexical Predictions: An Experimental Comparison

We investigate the problem of inducing word embeddings that are tailored for a particular bilexical relation. Our learning algorithm takes an existing lexical vector space and compresses it such that the resulting word embeddings are good predictors for a target bilexical relation. In experiments we show that task-specific embeddings can benefit both the quality and efficiency in lexical predic...

متن کامل

A Simple Regularization-based Algorithm for Learning Cross-Domain Word Embeddings

Learning word embeddings has received a significant amount of attention recently. Often, word embeddings are learned in an unsupervised manner from a large collection of text. The genre of the text typically plays an important role in the effectiveness of the resulting embeddings. How to effectively train word embedding models using data from different domains remains a problem that is underexp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1510.02675  شماره 

صفحات  -

تاریخ انتشار 2015